Half-Wave Mercury-Vapor Rectifier

GENERAL DATA

Electrical:
Filament, Coated: Voltage (AC)
Peak Tube Voltage Drop See Characteristics Range Values
Mechanical: Operating Position
Basing Designation for BOTTOM VIEW 2P
Pin 1 - No Internal Connection Pin 2 - Filament, Cathode Shield Pin 3 - Filament Pin 4 - No Internal Connection Cap - Anode
Temperature Control:
Heating—When the ambient temperature is so low that the normal rise of condensed-mercury temperature above the ambient temperature will not bring the condensed-mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required. Cooling—When the operating conditions are such that the maximum value of the operating condensed-mercury-temperature range is exceeded, provision should be made for

forced-air cooling sufficient to prevent exceeding the

- Indicates a change.

maximum value.

No loada.

Full load.

Temperature Rise of Condensed Mercury to Equilibrium

Above Ambient Temperature (Approx.):

oc

٥Č

HALF-WAVE RECTIFIER - In Phase Operation^c

Maximum Ratings. Absolute-Maximum Values:

For supply frequency of 60 cps

20 to 60 °C

Operating Condensed-Mercury-Temperature Range

20 to 55 °C 20 to 50 °C

PEAK INVERSE ANODE VOLTAGE ANODE CURRENT:	10000 max.	15000 max.	20000 max.	volts
Peak	8.3 max.	8.3 max. 1.8 max.	8.3 max.	amp
Average d Fault, for	1.0 max.	1.0 IIIaX.	1.0 IIIax.	amp
duration of 0.1 second				
max	100 max.	100 max.	100 max.	amp

HALF-WAVE RECTIFIER — Quadrature Operatione

Maximum Ratings, Absolute-Maximum Values:

For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range

	20 to 60 °C	20 to 55 °C	20 to 50 °C	
PEAK INVERSE ANODE VOLTAGE ANODE CURRENT:	10000 max.	15000 max.	20000 max.	volts
Peak	11.5 max. 2.5 max.		11.5 max. 2.5 max.	amp amp
0.1 second max	100 max.	100 max.	100 max.	amp

- With 4.75 volts rms on filament, and no heat-conserving enclosure.
- with 5.25 volts rms on filament, quadrature operation, average anode amperes = 2.5, and no heat-conserving enclosure.
- Filament voltage in phase with anode voltage.
- Averaged over any period of 20 seconds maximum.
- e Filament voltage out of phase $(60^{\circ} \text{ to } 120^{\circ})$ with anode voltage.

CHARACTERISTICS RANGE VALUES FOR FOULPMENT DESIGN

CHARACILRIGHTON RANGE TALOLO	1 OU TA	OFFICE	DECTUR	
	Note	Min.	Max.	
Filament Current	2	9		amp volts volts
Note 1: With 5 volts rms on filament. Note 2: With 5 volts rms on filament, and of 200 C.		sed-mercu		

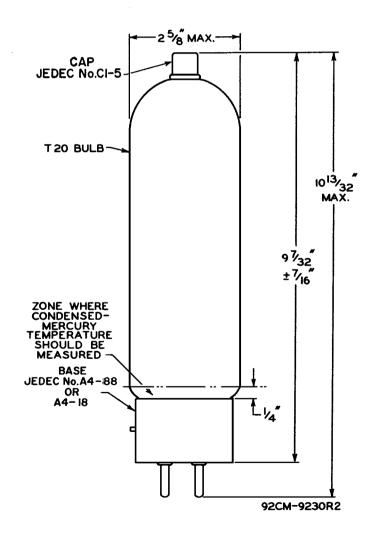
With 5 volts rms on filament, condensed-mercury temperature of 35 \pm 5° C, peak anode current of 11.5 amperes provided by half-cycle pulse from a 60-cps sine wave and recurring approximately once per second. Tube drop is measured by an oscilloscope connected between anode and center-tap of filament transformer. Note 3:

f Throughout tube life.

For Circuit Figures see Front of this Section

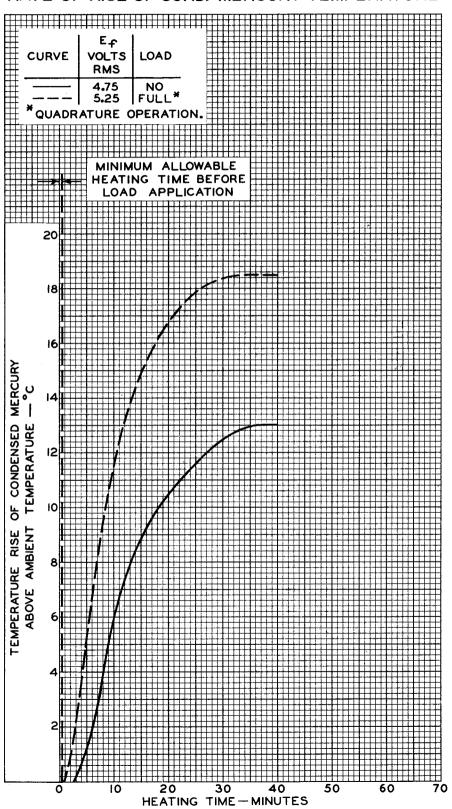
For Circuit Figures, see Front of this Section						
CIRCUIT	MAX. TRANS, SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES		X. DC OUTPUT KW TO FILTER	
Fig. 1 Half-Wave Single-Phase In-Phase Operation	14000 ^g	6300	1.8		11.5	
	10600 ^h	4700	1.8		8.5	
	7000 ^j	3200	1.8		5.5	
Fig. 2 Full-Wave Single-Phase In-Phase Operation	7000 ^g	6300	3.6		23	
	5300 ^h	4700	3.6		17	
	3500 ^j	3200	3.6		11	
Fig. 3 Series Single-Phase In-Phase Operation	14000 ⁹	12700	3.6		46	
	10600 ^h	9500	3.6		34	
	7000 ^j	6300	3.6		22	
Fig. 4 Half-Wave Three-Phase In-Phase Operation	8100 ^g	9500	5.4		51	
	6100 ^h	7100	5.4		38	
	4000 ^j	4700	5.4		25	
Fig. 5 Parallel Three-Phase Quadrature Operation	8100 ⁹	9500	15.0		143	
	6100 ^h	7100	15.0		106	
	4000 ^j	4700	15.0		71	
Fig. 6 Series Three-Phase Quadrature Operation	8100 ⁹	19000	7.5		143	
	6100 ^h	14200	7.5		106	
	4000 ^j	9500	7.5		71	
Fig. 7 Half-Wave Four-Phase Quadrature Operation	7000 ^g 5300 ^h 3500 ^j	9000 6700 4500	Resis- tive Load 10 10	Induc- tive Load 10 10	Resis- tive Load 90 67 45	Induc- tive Load 90 67 45
Fig. 8 Half-Wave Six-Phase Quadrature Operation	7000 9 5300 ^h 3500 ^j	9500 7100 4700	Resis- tive Load 	Induc- tive Load II.5 II.5	Resis- tive Load 105 78 52	Induc- tive Load 110 81 55

For maximum peak inverse anode voltage of 20000 volts, and condensed-mercury-temperature range of 20 to 50° C.


For maximum peak inverse anode voltage of 15000 volts, and condensed-mercury-temperature range of 20 to 55° C.

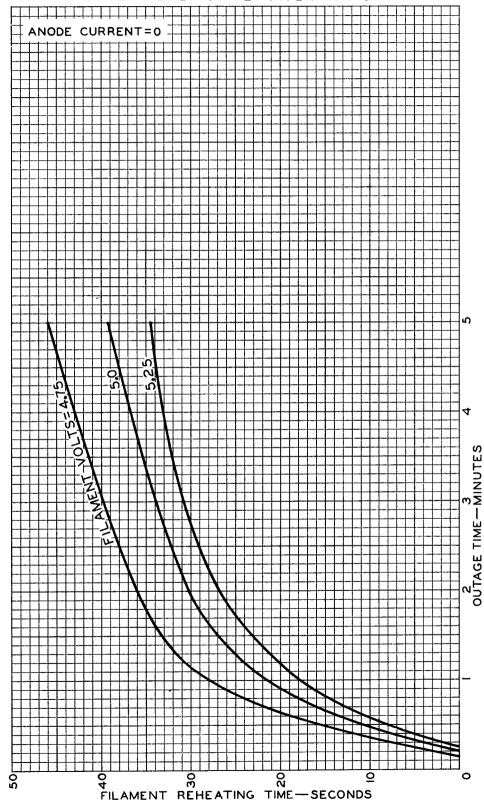
For maximum peak inverse anode voltage of 10000 volts, and condensed-mercury-temperature range of 20 to 60° C.

OPERATING CONSIDERATIONS


X rays are produced when the 6895 is operated with a peak inverse anode voltage above 16,000 volts (absolute value). These rays can constitute a health hazard unless the tube is adequately shielded for X-ray radiation. Although relatively simple shielding should prove adequate, make sure that it provides the required protection to the operator.

Shields and rf filter circuits should be provided for the 6895 if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Radio-frequency filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

RATE OF RISE OF COND.-MERCURY TEMPERATURE



6895

6895

FILAMENT REHEATING TIME REQUIRED AFTER POWER-SUPPLY INTERRUPTION

